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Summary  
This report describes a computational Structure-Battery Design Tool (SBDT) developed at the 

Naval Research Laboratory for analyzing the mechanical and electrical performance of multifunctional 

structure-battery materials configured in prismatic beam geometries. SBDT is implemented in Excel 

spreadsheet form and is capable of analyzing composite designs with several cross-section geometries 

including: circular-annular, rectangular-annular, and arbitrary-box. Instructions for using the SBDT and an 

overview of the calculations performed therein are included below. 

Introduction 
Multifunctional materials are “material systems” with more than one primary function. 

Multifunctional materials are developed to achieve system-level performance enhancements; local 

subsystem performance is a secondary concern. For example, the best structure-power multifunctional 

material may not be the strongest or stiffest, or have the largest energy storage capacity. What it should 

achieve is better system-level performance (e.g., flight time for an unmanned air vehicle) than can be 

obtained with any combination of unifunctional structure and power-storage materials. 

The Structure-Battery Design Tool (SBDT) is implemented in the form of Excel spreadsheets and 

is capable of analyzing the mechanical and electrical energy storage properties for prismatic composites 

(Figure 1) with circular-annular, rectangular-annular, or arbitrary-box cross-section configurations (Figures 

2). Inputs to the code include information related to geometry, configuration, material properties, etc., and 

outputs include mechanical stiffness and strength under axial, bending, torsion, shear, and buckling 

loads, electrical storage capacity, weight and volume based energy and power densities, etc. (Figure 3). 

Up to five distinct materials can be considered with the circular- and rectangular-annular cross-sections 

(Figure 2a and 2b) and seven distinct materials with the arbitrary-box cross-section (Figure 2c). The 

analysis of mechanical performance is based on classical Mechanics of Materials beam equations 

suitably extended for composites through the use of “modulus-weighted” cross-section properties in the 

stress and deformation equations. Nominal electrical performance is calculated assuming constant 

voltage and currents such that complete battery discharge occurs in one hour (i.e., 1C discharge rate). 

 

Figure 1: Schematic of a prismatic structure-battery material with internal load vectors R  and M  
(defined on page 6, below) applied at the ends. 

→ →
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 (a) (b) (c) 
Figure 2: The three composite cross-section configurations: (a) circular-annular, (b) rectangular-annular, 
and (c) arbitrary-box. The y-z axes are located at the modulus-weighted cross-section centroid; the y’-z’ 
axes are arbitrarily located. 
 
 

 
Figure 3: First page view of the SBDT for circular-annular cross-sections. The rose colored boxes signify 
input and the blue colored boxes are output. The yellow box on the left contains Geometric and Material 
Data input and calculations, and the tan box on the right contains Structure-Power property calculations 
for the composite beam. 

 

The type of geometric and material input that is required by each template is essentially the 

same. The geometric input defines each material’s geometry such as width, height, placement, surface 

area, etc. The material input is comprised of mechanical properties such as elastic stiffness, strength, 
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density, and electrical properties, i.e., electric charge storage capacities and nominal voltages. The 

combination of the geometric and material input is employed to calculate geometric and modulus-

weighted parameters such as centroids, cross-sectional areas, areal moments of inertia; mechanical 

parameters like stiffness, maximum displacements, yield strength, interfacial stresses; and electrical 

parameters for parallel and series connections like: voltage, power and energy densities, etc. Each SBDT 

has two calculation pages. The first page, denoted as “Input-Output”, performs calculations on one 

particular design. The layout of this page is shown in Figure 3. The second page, denoted “Parametric”, 

has all of inputs and outputs from “Input-Output” (page one) arranged horizontally in a single row. This 

provides an easy method for performing parametric studies on any of the input parameters. 

Directions for Use 
Colors are employed in the structure-battery design tool to distinguish input from output, and 

geometric and material data from structure-power material parameters. The color scheme is consistent in 

all design templates. 

The first page in each template is named “Input-Output” and contains three boxes or windows. 

The yellow box on the left is Geometric and Material Data input and calculations, and the tan box on the 

right is Structure-Power properties for the composite. There is a green box below the other two that is not 

shown in Figure 3; it contains auxiliary data employed in calculating output in the other two boxes. Input 

cells are rose-colored and output cells are pale blue. The second page is named “Parametric” and uses 

the same color scheme as the first page. 

The dimensional units used for each input and output cell are given. Note that all Inputs must 
conform to these units. Explanatory comments are also provided at various locations in the template. 

Input-Output: Geometric and Material Data  
The circular-annular design tool is denoted as C-SBDT, the rectangular-annular design tool is 

denoted as R-SBDT, and the arbitrary-box design tool is denoted as AB-SBDT. The first inputs in the 

yellow Geometric and Material Data box are: “Radius” for C-SBDT; “Width” and “Height” for R-SBDT; and 

“Width”, “Height”, and the z  centroid locations for the iˆ′ th material regions (i.e., iz′  values). As the input is 

entered, the blue columns to the right will be updated to show information on inner and outer diameters, 

wall thicknesses, and/or y ′  centroid locations for the iˆ th material region (i.e., iy ′  values). Specific data 

entry instructions for solid and hollow configurations are given next to the cross-section on Page 1.  

The next input consists of tensile and shear moduli, E  and G , for each component material. 

The shear modulus value is automatically calculated using the isotropic material expression: 

i i

( )2 1i iG E υ= +  with υ  (Poisson ratio) equal to 0.33. The user can replace the calculated shear modulus 

value with actual data if so desired. 

The next input is the reference moduli: E  and G . Numerical values can be arbitrarily assigned. 

A value of 1.0 is commonly used or the moduli values for one of the component materials. 

R R
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Yield strengths in tension (  and shear (  follow. The shear strengths are automatically 

calculated using the Tresca criterion: ( )

)o i
σ )o i

τ

)( 2o i
σo i

τ = . The user can replace these calculated shear 

strength values with actual data if so desired. 

Component weight densities, , are next. The last box in this column is output: the overall 

weight density of the composite. 

iρ

The next input is surface area per unit beam length (i.e., lineal surface area), S . Each S  entry 

is currently assigned the value of the average circumference or perimeter of the material region (e.g., 

 for circular cross-sections). The user can replace these calculated values with actual data if 

so desired. The last two cells in the column are the total sum of lineal surface areas, S , and the lineal 

surface area of the outer layer, S . Surface area quantities are used for electrical performance 

calculations on material regions comprised of multiple layers (e.g., multiple battery material layers). 

i i

( 1i ir rπ ++ )

OD

The next two blocks are output. The first consists of the cross-sectional area of each material 

component, , and total material cross-sectional area of the composite, . The second block gives the 

material component weight per unit beam length (i.e., lineal weight densities), w , and the total beam 

weight per unit beam length, w . 

iA A

L i

L

Modulus-weighted (MW) section properties are denoted by the “ * ” superscript. This includes 

parameters like: material area, ; cross-section location of the modulus weighted centroid, *A *y ′  and *z′ ; 

2nd moments of area, I , and I ; the two principal 2* *,yy zzI

2̂

*
yz

nd moments of area, I , and the corresponding 

angle between the 1-  principal axes relative to the  MW centroidal axes, θ ; polar moment of 

inertia, ; and 1

*
1,2

ˆ ˆ ˆ-y z

*
z

p

*K st areal moments of inertia,  and Q  about the MW cross-section axes. *
yQ

The last two input blocks are electrical data: electrical charge storage capacity per unit area, C , 

and nominal voltage, V , for each material component. The remaining blocks are electrical property 

outputs calculated for the i

i

i

th material regions including: electrical charge storage capacity per unit length 

(lineal capacity), ; power capacity per unit length (lineal power density), ; power per unit volume 

(power density), P ; power per unit weight (specific power), ; electrical energy per unit length (lineal 

energy density), ; electrical energy per unit volume (energy density), ; and electrical energy per 

unit weight (specific energy), . All of the electrical property calculations assume a 1C current draw rate 

(i.e., current, in amperes, numerically equal to the total charge capacity in ampere-hours [Linden and 

Reddy, 2001]). 

L ic

i

L ie

L ip

i

ip

E

ie

Structure-Power Material Parameters 
The first block in the tan colored box contains elastic stiffness estimates for the composite beam. 

The entries in C-SBDT include axial, bending, and torsional stiffnesses. Bending stiffness values about 
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the  and z  axes are included with R-SBDT. Bending stiffnesses about , , and the two principal 

axes are included with AB-SBDT. Note that the modulus-weighted -  axes are principal for the circular 

and rectangular cross-sections. 

ŷ ˆ ŷ ẑ

ŷ ẑ

The block below gives elastic deformations for beams of unit length with unit applied loads. The 

entries in C-SBDT include axial and bending displacements, and bending and torsional rotations. R-SBDT 

includes bending displacements and rotations about the  and  axes, and AB-SBDT includes bending 

displacements and rotations about the , , and two principal axes. 

ŷ ẑ

ŷ ẑ

The block to the right gives the electrical performance characteristics for the composite beam in 

the parallel and serial configurations. This includes quantities like: voltage, lineal and areal charge 

storage capacities, and lineal, volumetric, and weight-based energy and power densities. 

Yield data are given in the next row of blocks. This includes yield values for axial force, bending 

moment, torque, and transverse shear for each material and for the composite as a whole. R-SBDT 

includes two bending moment and transverse shear yield loads corresponding to  and  loading. AB-

SBDT includes four bending moment yield loads corresponding to , , and principal axis bending. The 

last entry in each block is the composite beam yield load, and it is taken as the minimum of all component 

material yield loads. 

ŷ ẑ

ŷ ẑ

The next “block” gives the Euler buckling forces for composite beams of unit length. Values are 

computed for buckling about the principal 2nd moment of area axes. 

The last row of blocks displays the normal and shear stress discontinuities at the interface 

between component materials with unit internal load values (i.e., axial force, bending moment(s) and 

torque). The last entry is the maximum stress discontinuity value for that particular loading. 

Parametric Page 
The entries on the Parametric page are exactly the same as those on the Input-Output page 

except for their physical layout. The cells on the Parametric page are arranged in a single horizontal row 

of the spreadsheet. Parametric studies can be performed by copying a “filled-in” row (i.e., inputs and 

subsequent outputs) to one or more empty rows followed by modifications to one or more of the column 

parameters.  After performing the copy-paste and parameter modification steps, copy the entire page and 

then use the “Paste-Values Only” command to copy the only the numerical values onto another page for 

use in plotting. The “Paste-Values Only” command allows one to delete useless columns without affecting 

the other numbers. On the other hand, if changes are made on the Parametric page, then the page-copy-

for-plotting steps will have to be re-performed. 

Mechanical Analysis of Prismatic Structure-Battery Materials  
The use of modulus-weighted cross-section properties provides a simple method for taking into 

account the composite nature of prismatic structure-battery materials in the analysis of mechanical 
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performance [Allen and Haisler, 1985]. Standard “Mechanics of Materials” beam equation forms are 

retained with certain cross-sectional parameters replaced by modulus-weighted quantities. 

The materials and cross-section are assumed to be constant along the length of the member 

(prismatic beam assumption), taken as the x-axis. Six types of internal loads are possible. They are 

assumed to be constant along the length (i.e., no x dependence) and to pass or act through the cross-

section’s modulus-weighted centroid. They are represented, in Figure 1, by the vectors  and : R
→

M
→

  (1) ˆ ˆyR Px V y V z
→

= + + ˆz

ˆ  (2) ˆ ˆxy xzM Tx M y M z
→

= + +

P  is the axial force; V  and V  are the  and  transverse shear forces,  respectively; T is the torque; 

and  and  are the  and z  bending moments, respectively. The internal load sign convention is 

as follows: 

y z ŷ ẑ

xyM xzM ŷ ˆ

Positive internal loads: positive face and positive coordinate directions or negative face and 

negative coordinate directions. 

Negative internal loads: positive face and negative coordinate directions or negative face and 

positive coordinate directions.  

Modulus-Weighted Cross-Section Property Calculations 
The modulus-weighted cross-section properties, for discrete material distributions, are calculated 

as shown below [Allen and Haisler, 1985]. The coordinate axes can be arbitrarily located in the 

plane of the cross-section. The primary coordinate system is the  modulus-weighted centroidal axes. 

ˆ ˆ-y z′ ′

ˆ ˆ-y z

Modulus-Weighted Area: 

 
1 R

* :
n

i
i

i

EA
E=

= ∑ A  (3) 

Modulus-Weighted Centroid Location:  

 
1 1R R

* *
*

1 1:   and  :
n n

i
i i i i

i i

Ey A y z
E EA A= =

′ ′ ′= =∑ *
iE A z′∑  (4) 

Modulus-Weighted 2nd Area Moments of Inertia: 

 ( ){ } ( ){ } ( ){2 2
0 0

1 1 1R R R

* * *:  , :  , :
n n n

i i i
yy yy i i zz zz i i yz yz i i iii i

i i i

E E EI I z A I I y A I I y
E E E= = =

= + = + = +∑ ∑ ∑ }0 z A  (5) 

 ( )
2

2 1
1,2

* * * * *
* *

* *

2
:     and   2 tan

2 2
yy zz yy zz yz

yz p
yy zz

I I I I I
I I

I I
θ −

  + −
= ± + =     −  





 (6) 

Modulus-Weighted Polar Moment of Inertia (parallel torsional springs): 

 ( )0
1 R

* :
n

i
i

i

GK
G=

= ∑ K  (7) 
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In Equations (3)-(7), n is the number of materials in the cross-section. E  and G  are the tensile 

and shear modulus for the i

i i

th material.  is the cross-sectional area of the iiA th material. iy ′  and iz′

) i

 are the 

coordinates of the ith material centroid relative to the ′  axes. ( ) , , and (  are the 

second moments of area of the i

ˆ ˆ-y z′ 0yy i
I ( 0zzI ) i 0yzI

th material about the ith material centroidal axes. iy  and iz

*
1,2I

 are the 

coordinates of the ith material centroid relative to the modulus-weighted  centroidal axes.  are the 

principal 2

ˆ-y ẑ
nd moments of area and θ  is the principal orientation angle relative to the  centroidal axes. 

 is the “effective” polar moment of inertia of the i

p ˆ ˆ-y z

( )0 i
K

RG

th material area relative to the ith material centroidal 

axes. Expressions for (  pertaining to rectangular cross-sections are given below. Finally, E  and 

 are the reference tensile and shear moduli; their value is arbitrary and any convenient value can be 

selected for use. 

)0 i
K R

Note that I  for the circular- and rectangular-annular cross-sections, for doubly symmetric 

cross-sections, and for cross-sections with the modulus-weighted coordinate axes in the principal 

orientation. Great simplifications occur in the stress and deformation expressions when this cross-product 

term is zero.  

* 0yz =

Stress Calculations 
The normal stress in the ith material due to internal axial force and/or bending moment is given by: 

 ( ) ( ) ( )
* *

* * * 22
R

* *

* * * *
xz yy xy yz xy zz xz yzi

x i
yy zz yzyy zz yz

M I M I M I M IE P y
E A I I II I I

σ
 + += − +

−−  
z  (8) 

where “y” and “z” are positive or negative distances from the modulus weighted centroid to the point of 

interest.  

The shear stress in the ith material due to an internal torque is given by: 

 
R

*
i

i
G T r
G K

τ
×

=  (9) 

for circular-annular cross-sections where “r” is the distance from the modulus weighted centroid to the 

radial point of interest. The maximum torsional shear stress for solid rectangular sections is given by: 

 ( )
max * 2 2

3 1.8solid solid

R

T b hG K
G K b h

τ
+

=  (10) 

It occurs on the perimeter at the midpoint of the longest side. The geometry is shown in Figure 4a with the 

“b” dimension denoting the longer side. 

The torsional shear stress for hollow rectangular sections is given by: 

 ( ) ( )
( ) ( )

0
*,

,2
i i

i b h
R b h b

KG T
G t b t h tK

τ =
− − h

 (11) 
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and is assumed constant through the wall (thin-walled assumption). The geometry is shown in Figure 4b. 

Expressions for the “effective” polar moment of inertias are given by: 

 
4

3
4

1 0.21 1
3 12solid

h hK bh
b b

  
= − − 

  
  (12) 

 
( ) ( )2 2

0 2 2

2 h b b h

b h b h

t t b t h t
K

bt ht t t
− −

=
+ − −

 (13) 

Eqs. (10) and (12) are obtained from [Roark and Young, 1975] and Eqs. (11) and (13) from torsion 

analysis of arbitrary shaped thin-walled tubes [Allen and Haisler, 1985]. 

 

 
(a) 

 

 
(b) 

Figure 4: Solid (a) and hollow (b) rectangular cross-section geometries and variables. 
 

Shear stresses, τ  and τ , due to transverse shear forces are given by: xy xz

 
( )
( )

( )
( )

* * * * **

* * * 2 * * * 2
   and   y yy z yz z zz y yz yz

xy xz
z yyy zz yz yy zz yz

V I V I V I V I QQ
t tI I I I I I

τ τ
− + − +

= =
− −

 (14) 

where Q  and Q  are the modulus-weighted first moments of area about  axes: *
y

*
z ˆ ˆ-y z

 ( )*

1 R

:
n

i
y y i

i

EQ
E=

= ∑ Q    and   ( )*

1 R

:
n

i
z i

i

E
E=

= ∑ .zQQ  (15) 

with ( ) :y ii
Q z= iA  and ( ) :z ii

Q y=

ŷ

iA

zt

, the first moments of area of the ith material about the modulus-

weighted centroidal axes (i.e.,  and ). Also, t  are the material thickness (total) along  or z  

cross-section “cuts” where the shear stresses are computed. 

ẑ  and y ŷ ˆ

Yield Failure Loads 
Failure by yielding is assumed to occur when any one of the component materials yields. Internal 

load values, considered one at a time, for which yielding occurs are calculated using the stress 

equations, Eqs. (8)-(10), (11), and (14), and tensile and shear yield strength input values. The equations 

are detailed below: 
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ALL: ( ) ( ) ( )*R
0 0 0   and   : min

i i i
i

EP A P
E

σ= 0 i
P=  (16) 

C-SBDT: ( ) ( ) ( ) ( )
*

R
0 0 0

max

   and   : min
i i i

i i

E IM M
E r

σ= 0 i
M=  (17) 

 ( ) ( ) ( ) ( )
*

R
0 0 0

max

   and   : min
i i i

i i

G KT
G r

τ= 0 i
T T=  (18) 

 ( ) ( ) ( )
*

0 0 0*

    and   : minz zz
i i i

z

t IV V
Q

τ= 0 i
V=  (19) 

R-SBDT: ( ) ( ) ( ) (
*

R
0 0 0

max

   and   : minyy
xy xy xyii ii

i i

IEM M
E z

σ= )0M=  (20) 

 ( ) ( ) ( ) ( )
*

R
0 0 0

max

   and   : minzz
xz xz xzi i i

i i

E IM M
E y

σ= 0 i
M=  (21) 

 ( ) ( ) ( ) ( ) ( ) ( )( )(
* 2 2 *

0 0 0 ,
0

  ,  2
3 1.8

R R
b h b hsolid solid i i

solid solid i i

G GK b h KT T t
G K b h G K

τ τ= =
+

)0b t h t− −

}0

 (22) 

and  (23) ( ) ( ){0 0: min ,
solid ii

T T T=

 ( ) ( ) ( )
*

0 0 0*

    and   : minz zz
y yii i

z

t IV V
Q

τ= = 0y i
V  (24) 

 ( ) ( ) ( )
*

0 0 0*

 
   and   : miny yy

z zi i i
y

t I
V V

Q
τ= 0z i

V=  (25) 

AB-SBDT: ( ) ( )
( ) ( )( ) ( ) (

* * * 2
R

0 0* *
max max

   and   : minyy zz yz
xy xy xyii ii

i zz yzi i

I I IEM
E z I y I

σ
−

=
−

)0 0M M=  (26) 

 ( )
( )

( ) ( )( ) ( ) ( )
* * * 2

R
0 0* *

max max

   and   : minyy zz yz
xz xz xzi i i

i yz yyi i

I I IEM
E z I y I

σ
−

=
−

0 0 i
M M=  (27) 

 ( ) ( ) ( ) ( )
*

R 1
10 0 10 10

max

   and   : min
2i i i

i i

E IM M
E d

σ=
i

M=  (28) 

 ( ) ( ) ( ) ( )
*

R 2
20 0 20 20

max

   and   : min
1i i i

i i

E IM M
E d

σ=
i

M=  (29) 

 ( ) ( ) ( ) ( ){
* 2 2

0 0 0   and   : min
3 1.8

R
i i i

i i

G K b hT
G K b h

τ=
+

}0 i
T T=  (30) 

 ( ) ( ) ( ) ( )
* * * 2

0 0 0* *    and   : minyy zz yzz
y ii ii

z yy

I I ItV
Q I

τ
−

= 0y yV V=  (31) 

 ( ) ( ) ( ) ( )
* * * 2

0 0 0* *    and   : minyy zz yzy
z i i i

y zz

I I It
V

Q I
τ

−
= 0z z i

V V=  (32) 
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Buckling Failure Forces 
Critical buckling forces for the principal planes (xy and xz planes for the circular and rectangular 

cross-sections) are calculated using the Euler buckling equation with pinned end conditions and unit 

beam length (i.e., ): 1L c= m

 ( ) ( )
2 * 2

R 1 R 2
21

   and   Cr Cr
E I E IP P
L L

π
=

*

22

π
=  (33) 

The minimum buckling load, for a given cross-section configuration, corresponds with the minimum 

principal 2nd areal moment value. 

Interphase Stress Discontinuities 
The difference in the normal and the torsional shear stresses at the interface between the 

component materials is calculated for various unit internal loading cases. 

Deformation Calculations 
Displacements and rotations for the composite beams are calculated assuming that the internal 

loads are constant along the length (i.e., no x dependence): 

 *
R R

    o
o

du P u
dx E A E A

= ⇒ = *

P L  (34) 

 
( )

( )
( )
* ** *2

2 * * * 2 * * * 2
R R

    
2

xz yy xy yzxz yy xy yzo
o

yy zz yz yy zz yz

M I M I LM I M Id v v
dx E I I I E I I I

++
= ⇒ =

− −

2

 (35) 

 
( )

( )
( )
* ** *2

2 * * * 2 * * * 2
R R

    
2

xy zz xz yzxy zz xz yzo
o

yy zz yz yy zz yz

M I M I LM I M Id w w
dx E I I I E I I I

++
= − ⇒ = −

− −

2

 (36) 

 *     x
x

R R

d T
dx G K G K
θ

θ= ⇒ = *

T L  (37) 

 
( )

( )
( )

* ** *

* * * 2 * * * 2
R R

    xy zz xz yzy xy zz xz yz
y

yy zz yz yy zz yz

M I M I Ld M I M I
dx E I I I E I I I
θ

θ
++

= ⇒ =
− −

 (38) 

 
( )

( )
( )

* ** *

* * * 2 * * * 2
R R

    xz yy xy yzxz yy xy yzz
z

yy zz yz yy zz yz

M I M I LM I M Id
dx E I I I E I I I
θ

θ
++

= ⇒ =
− −

 (39) 

In the above equations, u v are the x, y, z displacements, and θ θ  are the x, y and 

z-axis rotations of the modulus-weighted centroid. 

, ,  and o o ow , ,  and x y θ z

Elastic Stiffness Calculations 
Elastic stiffness values for the various internal loads are calculated using Eqs. (34) - (39): 

Axial: 
*

R
0       :a a

E AP k u k
L

= ⇒ =  (40) 

10 



 

Torsion: 
*

R      :t x t
G KT k k

L
θ= ⇒ =  (41) 

Bending-Symmetric: ( ) ( ) ( )* * * 2
R

*      : yy zz yz
xy b y byy yy

zz

E I I I
M k k

I L
θ

−
= ⇒ =  (42) 

 ( ) ( ) ( )* * * 2
R

*      : yy zz yz
xz b z bzz zz

yy

E I I I
M k k

I L
θ

−
= ⇒ =  (43) 

Antisymmetric: ( ) ( ) ( ) ( ) ( )* * * 2
R

* and : yy zz yz
xy b z xz b y b byz zy yz zy

yz

E I I I
M k M k k k

I L
θ θ

−
= = ⇒ = =  (44) 

The values listed in the Elastic Stiffnesses block are computed assuming unit length (i.e.,  

cm). Also, note that  and  for circular configurations and that 

 for rectangular configurations. 

1L =

( ) ( )b byy zz
k k= ( ) ( )b byz zy

k k= = ∞

= ∞

N m

( ) ( )b byz zy
k k=

Elastic Deflection Calculations 
Elastic deformations are calculated for various internal loadings assuming unit load and unit 

length values (e.g., P  and ): 1= 1L c=

 ( )0 0 *0
R

1      : a
a

Pu u
k E A

δ= ⇒ = =  (45) 

 
( ) ( ) ( ) ( ) ( ) ( )

* *

0 * * * 2 * * * 2
R R

         and   
2 2 2 2

xy yy yzxz
y ys a

b b yy zz yz yy zz yzzz yz

M L I IM Lv
k k E I I I E I I I

δ δ= + ⇒ = =
− −

 (46) 

 
( ) ( ) ( ) ( ) ( ) ( )

**

0 * * * 2 * * * 2
R R

         and   
2 2 2 2

xy yzxz zz
z zs a

b b yy zz yz yy zz yzyy yz

M L IM L Iw
k k E I I I E I I I

δ δ
− −− −

= + ⇒ = =
− −

 (47) 

 ( ) *0
R

1      x x
t

T
k G K

θ θ= ⇒ =  (48) 

 
( ) ( ) ( ) ( ) ( ) ( )

**

* * * 2 * * * 2
R R

         and   xy yzxz zz
y y ys a

b b yy zz yz yy zz yzyy yz

M IM I
k k E I I I E I I I

θ θ θ
− −− −

= + ⇒ = =
− −

 (49) 

 
( ) ( ) ( ) ( ) ( ) ( )

* *

* * * 2 * * * 2
R R

         and   xy yy yzxz
z z zs a

b b yy zz yz yy zz yzzz yz

M IM
k k E I I I E I I I

θ θ θ= + ⇒ = =
− −

I

N m

m m

m m

 (50) 

 

Summarizing: 

aδ  is the  deflection for P  and  x̂ 1= 1L c=

yδ  or  is the “symmetric” part of the  deflection for  and  ( )y s
δ ŷ 1 -xzM N c= 1L c=

( )y a
δ  is the “antisymmetric” part of the  deflection for M  and  ŷ 1 -xy N c= 1L c=
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zδ  or  is the “symmetric” part of the  deflection for  and  ( )z s
δ ẑ 1 -xyM N c= m m

m m

m m

m m

m m

m m

m m

1L c=

( )z a
δ  is the “antisymmetric” part of the  deflection for M  and L c  ẑ 1 -xz N c= 1=

xθ  is the x-axis rotation for T N  and L c  1 -c= 1=

yθ  or  is the “symmetric” part of the y-axis rotation for M  and L c  ( )y s
θ 1 -xy N c= 1=

( )y a
θ  is the “antisymmetric” part of the y-axis rotation for  and L c  1 -xzM N c= 1=

zθ  or  is the “symmetric” part of the z-axis rotation for M  and L   ( )z s
θ 1 -xz N c= 1 c=

( )z a
θ  is the “antisymmetric” part of the z-axis rotation for  and L   1 -xyM N c= 1 c=

Cross-deflections and rotations (i.e., symmetric and antisymmetric parts) occur when I .  * 0yz ≠

Weight Density Calculations 
The weight density of the composite beam is defined as: 

 :
i i

i
A

A

ρ
ρ =

∑
 (51) 

where  is the weight density of the iiρ
th material, Ai is the cross-section area of the ith material region, and 

A is total cross-section area. The weight density per unit length (lineal density), is defined as: 

  (52) L :w ρ= A

S

Battery Performance Calculations 
The electrical charge storage capacity per unit area (areal charge capacity), C , and the nominal 

voltage, , of the i

i

iV th material are supplied as input data in the yellow Geometric and Material Data box. 

Areal charge storage capacity is a common parameter used in rating the performance of battery cell 

materials supplied in thin-sheet form. The “theoretical” charge storage capacity, or the total amount of 

electrical charge transferred in complete reaction of active battery material, can be calculated knowing the 

amount of active material present in the cell and the chemical and electron transfer reactions involved. 

Charge storage capacity per unit length (lineal charge capacity) is output in an adjacent block: 

Lineal Charge Capacity: :  (53) L i i ic C=

iS  is the surface area of the ith material per unit beam length (lineal surface area). 

The next row of blocks gives the power capacity per unit length (lineal power density), the power 

per unit volume (power density), and the power per unit weight (specific power) for each material 

component. The calculated power quantities assume that discharge occurs at the nominal voltage and at 

the 1C current draw rate (i.e., current in A numerically equal to charge storage capacity in A-h) (Linden & 

Reddy, 2001). At the 1C discharge rate, the battery energy is completely drained in 1 hour. 
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Lineal Power Density: :
1 

i i
Li

c Vp
hr

=  (54) 

Power Density: : Li
i

i

pP
A

=  (55) 

Specific Power: : i
i

i

Pp
ρ

=  (56) 

The last row of blocks gives the stored energy per unit length (lineal energy density), the stored 

energy per unit volume (energy density), and the stored energy per unit weight (specific energy) for each 

material component. Again, the calculated quantities assume that discharge occurs at the nominal 

voltage and at the 1 C current draw rate: 

Lineal Energy Density: : 1  (57) Li Lie p h= × r

r

r

V

Energy Density: : 1  (58) i iE P h= ×

Specific Energy: : 1  (59) i ie p h= ×

Parameters in the Electrical Performance Characteristics block located in the tan-colored 

Composite Structure-Battery Properties box are calculated for both parallel and serial configurations 

and include: electrical charge storage capacity per unit length (lineal charge capacity), voltage, 1 C 

current capacity per unit length (lineal current density), power per unit length (lineal power density), power 

per unit enclosed (C- and R-SBDT) volume (power density), power per unit weight (specific power), 

stored energy per unit length (lineal energy density), energy per unit enclosed (C- and R-SBDT) volume 

(energy density), and energy per unit weight (specific energy) for the composite beam. The equations 

used in the calculations are detailed below: 

 Parallel Series 

Lineal Charge Capacity:    (60) L Li
i

c c= ∑ L 1 2 3L L Lc c c c= = = = ⋅ ⋅ ⋅

Voltage:   (61) 1 2 3V V V V= = = = ⋅ ⋅ ⋅ i
i

V = ∑

Lineal 1C Current Density: L 1 
Lci
hr

=  L 1 
Lci
hr

=  (62) 

Lineal Power Density: L 1 
Lc Vp
hr

=  L 1 
Lc Vp
hr

=  (63) 

Power Density: 
0

LpP
A

=  
0

LpP
A

=  (64) 

Specific Power: L

L

pp
w

=  L

L

pp
w

=  (65) 

Lineal Energy Density:   (66) L Le c V= L Le c V=

Energy Density: 
0

LeE
A

=  
0

LeE
A

=  (67) 
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 Parallel Series 

Specific Energy: L

L

ee
w

=  L

L

ee
w

=  (68) 

The cL (Series) quantity in Eq. (60) is assigned the first nonzero cLi value and the V (Parallel) 

quantity in Eq. (61) is assigned the first nonzero Vi value. The quantity, A0 , denotes the cross-section 

area defined by the outermost perimeter, for the circular and rectangular cross-sections, and total 

material area for arbitrary-box sections. 
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Nomenclature Table 
  Total material-filled cross-section area of the composite [cmA 2] 
  Cross-sectional area of iiA th material region [cm2] 

  Projected cross-section area of the outer perimeter [cm0A 2] 

  Modulus-weighted cross-sectional area [cm*A 2] 
  Width of a rectangular solid component [cm] b
  Charge storage capacity per unit length (lineal capacity) of iL ic th material region [Ah/cm] 

  Charge storage capacity per unit length (lineal charge capacity) of composite [Ah/cm] Lc

  Charge storage capacity per unit area (areal charge capacity) of iiC th material [Ah/cm2] 

  Stored energy per unit weight (specific energy) of composite [Wh/Kg] e
  Stored electrical energy per unit weight (specific energy) of iie th material region [Wh/Kg] 

  Stored energy per unit length (lineal energy density) of composite [Wh/cm] Le

  Stored electrical energy per unit length (lineal energy density) of iL ie th material [Wh/cm] 

  Stored energy per unit volume (energy density) of composite [Wh/cmE 3] 
  Stored electrical energy per unit volume (energy density) of iiE th material region [Wh/cm3] 

 , G  Tensile and shear modulus of iiE i
th material region [MPa] 

 , G  Reference tensile and shear modulus [MPa] RE R

  Shear modulus of rectangular solid component [MPa] solidG

  Height of a rectangular solid component [cm] h
  1 C current capacity of the composite per unit length (lineal current capacity) [A/cm] Li

 , ,  2( )0yy i
I ( )0zz i

I ( )0yz i
I nd areal moments of the ith material region about their centroidal axes [cm4] 

 , I  Principal modulus-weighted 2*
1I

*
2

nd moments of area [cm4] 

 , I , I  Modulus-weighted 2*
yyI *

zz
*
yz

nd moments of area [cm4] 

  Axial stiffness of composite [N/cm] ak

  Torsional stiffness of composite [N-cm] tk

 , (  Symmetric bending stiffness components [N-cm] ( )b yy
k )b zz

k

 =  Antisymmetric bending stiffness components [N-cm] ( )b yz
k ( )b zy

k

  “Effective” polar moment of inertia of i( )0 i
K th material region about their centroidal axes [cm4] 

  “Effective” polar moment of a rectangular solid component [cmsolidK 4] 

  Modulus-weighted “effective” polar moment of inertia [cm*K 4] 
 ,  Internal bending moments about y and z axes [N-cm] xyM xzM

 , M  Bending moment components that cause yielding in composite [N-cm] 0xzM 0xy

 , ( )  Bending moment components that cause yielding in i( )0xz i
M 0xy i

M th material region [N-cm] 

  Power per unit weight (specific power) of composite [W/kg] p

  Power per unit weight (specific power) of iip th material region [W/kg] 

  Power per unit length (lineal power density) of composite [W/cm] Lp
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  Power capacity per unit length (lineal power density) of iL ip th material region [W/cm] 

  Power per unit volume (power density) of composite [W/cmP 3] 
  Internal axial force [N] P
  Power per unit volume (power density) of iiP th material region [W/cm3] 

  Axial force that causes yield in composite [N] 0P

  Axial force that causes yield in i( )0 i
P th material region [N] 

 ,  Euler buckling forces for bending in the principal planes [N] ( )1CrP ( ) 2CrP

 , (  1( )y i
Q )z i

Q st areal moment of ith material region [cm3] 

 , Q  Modulus-weighted 1*
yQ *

z
st areal moments [cm3] 

  Radial coordinate from modulus weighted centroid to point of interest [cm] r
  Total sum of lineal surface areas [cmS 2/cm] 
  Surface area per unit beam length (lineal surface area) of iiS th material region [cm2/cm] 

  Surface area of the outer layer [cmODS 2/cm] 

  Thickness of rectangular cross-section of ibt th material region in width direction [cm] 

  Thickness of rectangular cross-section of iht th material region in height direction [cm] 

 , t  Material thickness in the  and z  directions [cm] yt z ŷ ˆ

  Internal torque [N-cm] T
  Torque that causes yield in composite [N-cm] 0T

  Torque that causes yield in i( )0 i
T th material region [N-cm] 

 , v ,  Displacement components of the MW centroid [cm] ou o ow

  Nominal voltage of the composite [Volts] V
  Nominal voltage of iiV th material region [Volts] 

 , V  Internal transverse shear forces in y and z directions [N] yV z

 , V  Transverse shear force components that cause yielding in composite [N] 0yV 0z

 , ( )  Transverse shear force components that cause yielding in i( )0y i
V 0z i

V th material region [N] 

  Weight per unit length (lineal weight density) of composite [g/cm] Lw

  Weight per unit beam length (lineal weight densities) of iL iw th material region [g/cm] 

 , ,  Unit vectors in the modulus weighted centroidal coordinate system x̂ ŷ ẑ

 , y , z  Units vectors in an arbitrary coordinate system x̂′ ˆ ′ ˆ′
 , z  Coordinates from modulus weighted centroid to point of interest [cm] y

 iy , iz  Centroidal coordinates of the ith material region relative to the modulus-weighted axes [cm] 

 iy ′ , i′z  Centroidal coordinates of the ith material region relative to the  axes [cm] ˆ ˆ-y z′ ′

  
 , δ , δ  Displacement components of a point located at the MW centroid [cm] aδ y z

  Poisson’s ratio [1] υ
  Weight density of composite [g/cmρ 3] 

  Weight density of iiρ
th material region [g/cm3] 

  Tensile yield strength of i( )o i
σ th material region [Pa] 
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  Torsional stress in circular annular cross-section of iiτ
th material region [Pa] 

  Maximum torsional stress in rectangular solid component [Pa] maxτ

 , τ  Transverse shear stress components [Pa] xyτ xz

  Shear yield strength of i( )o i
τ th material region [Pa] 

  Torsional stress in rectangular cross-section of i( ) ,i b h
τ th material region [Pa] 

  Orientation of the principal axes relative to the  axes [deg] pθ ˆ ˆ-y z

 , θ , θ  Rotation components of a point located at the MW centroid [deg] xθ y z

  Symmetric component of the quantity in parentheses ( ) s
•

  Antisymmetric component of the quantity in parentheses ( ) a
•
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